Extended Fisher Criterion Based on Auto-correlation Matrix Information

نویسندگان

  • Hitoshi Sakano
  • Tsukasa Ohashi
  • Akisato Kimura
  • Hiroshi Sawada
  • Katsuhiko Ishiguro
چکیده

Fisher’s linear discriminant analysis (FLDA) has been attracting many researchers and practitioners for several decades thanks to its ease of use and low computational cost. However, FLDA implicitly assumes that all the classes share the same covariance: which implies that FLDA might fail when thhis assumption is not necessarily satisfied. To overcome this problem, we propose a simple extension of FLDA that exploits a detailed covariance structure of every class by utilizing revealed by the class-wise auto-correlation matrices. The proposed method achieves remarkable improvements classification accuracy against FLDA while preserving two major strengths of FLDA: the ease of use and low computational costs. Experimental results with MNIST and other several data sets in UCI machine learning repository demonstrate the effectiveness of our method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Bayesian Optimal Design for Logistic Model

Consider a Bayesian optimal design with many support points which poses the problem of collecting data with a few number of observations at each design point. Under such a scenario the asymptotic property of using Fisher information matrix for approximating the covariance matrix of posterior ML estimators might be doubtful. We suggest to use Bhattcharyya matrix in deriving the information matri...

متن کامل

Phoneme recognition based on fisher weight map to higher-order local auto-correlation

In this paper, we propose a new feature extraction method based on higher-order local auto-correlation (HLAC) and Fisher weight map (FWM). Widely used MFCC features lack temporal dynamics. To solve this problem, 35 types of local auto-correlation features are computed within two-dimensional local regions. These local features are accumulated over more global regions by weighting high scores on ...

متن کامل

Improving Chernoff criterion for classification by using the filled function

Linear discriminant analysis is a well-known matrix-based dimensionality reduction method. It is a supervised feature extraction method used in two-class classification problems. However, it is incapable of dealing with data in which classes have unequal covariance matrices. Taking this issue, the Chernoff distance is an appropriate criterion to measure distances between distributions. In the p...

متن کامل

Consistent estimation of the architecture of multilayer perceptrons

We consider regression models involving multilayer perceptrons (MLP) with one hidden layer and a Gaussian noise. The estimation of the parameters of the MLP can be done by maximizing the likelihood of the model. In this framework, it is difficult to determine the true number of hidden units using an information criterion, like the Bayesian information criteria (BIC), because the information mat...

متن کامل

A framework for model-based design of experiments in the presence of continuous measurement systems

Model-based design of experiments (MBDoE) techniques are a useful tool to maximise the information content of experimental trials when the purpose is identifying the set of parameters of a deterministic model in a statistically sound way. When samples are collected in a discrete way, the formulation of the optimal design problem is based on the maximisation of the expected information, usually ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012