Extended Fisher Criterion Based on Auto-correlation Matrix Information
نویسندگان
چکیده
Fisher’s linear discriminant analysis (FLDA) has been attracting many researchers and practitioners for several decades thanks to its ease of use and low computational cost. However, FLDA implicitly assumes that all the classes share the same covariance: which implies that FLDA might fail when thhis assumption is not necessarily satisfied. To overcome this problem, we propose a simple extension of FLDA that exploits a detailed covariance structure of every class by utilizing revealed by the class-wise auto-correlation matrices. The proposed method achieves remarkable improvements classification accuracy against FLDA while preserving two major strengths of FLDA: the ease of use and low computational costs. Experimental results with MNIST and other several data sets in UCI machine learning repository demonstrate the effectiveness of our method.
منابع مشابه
An Efficient Bayesian Optimal Design for Logistic Model
Consider a Bayesian optimal design with many support points which poses the problem of collecting data with a few number of observations at each design point. Under such a scenario the asymptotic property of using Fisher information matrix for approximating the covariance matrix of posterior ML estimators might be doubtful. We suggest to use Bhattcharyya matrix in deriving the information matri...
متن کاملPhoneme recognition based on fisher weight map to higher-order local auto-correlation
In this paper, we propose a new feature extraction method based on higher-order local auto-correlation (HLAC) and Fisher weight map (FWM). Widely used MFCC features lack temporal dynamics. To solve this problem, 35 types of local auto-correlation features are computed within two-dimensional local regions. These local features are accumulated over more global regions by weighting high scores on ...
متن کاملImproving Chernoff criterion for classification by using the filled function
Linear discriminant analysis is a well-known matrix-based dimensionality reduction method. It is a supervised feature extraction method used in two-class classification problems. However, it is incapable of dealing with data in which classes have unequal covariance matrices. Taking this issue, the Chernoff distance is an appropriate criterion to measure distances between distributions. In the p...
متن کاملConsistent estimation of the architecture of multilayer perceptrons
We consider regression models involving multilayer perceptrons (MLP) with one hidden layer and a Gaussian noise. The estimation of the parameters of the MLP can be done by maximizing the likelihood of the model. In this framework, it is difficult to determine the true number of hidden units using an information criterion, like the Bayesian information criteria (BIC), because the information mat...
متن کاملA framework for model-based design of experiments in the presence of continuous measurement systems
Model-based design of experiments (MBDoE) techniques are a useful tool to maximise the information content of experimental trials when the purpose is identifying the set of parameters of a deterministic model in a statistically sound way. When samples are collected in a discrete way, the formulation of the optimal design problem is based on the maximisation of the expected information, usually ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012